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Abstract

We created a robust computer vision classifier
that performs well in a dataset that contains per-
turbations. To achieve this, we used various data
augmentation and other deep learning model tech-
niques, such as model ensembling, image denois-
ing, adversarial training, and attention networks.
These methods helped improve the robustness
against both naturally perturbed and adversarial
datasets. In addition, we created class action map
visualizations for our models to help understand
how the model makes its classification decisions.
Through these techniques, we achieved a 71.1%
Top 1 Accuracy and 90.0% Top 5 Accuracy on
the Tiny-ImageNet classification challenge.

1. Introduction

Data perturbation is omnipresent in the real world and
widely occurs due to compression, resizing, and cropping
corruptions in visual input. In spite of the impressive
performance on challenging tasks in image classification,
the performance of deep networks can be largely affected
by data perturbations (Krizhevsky et al., 2017). Therefore,
we aim to build an image classifier robust to both natural
and adversarial image perturbations. We propose several
approaches to stabilizing deep learning neural networks
towards making them more robust.

Our main contributions can be summarized as follows:

e We present a well-designed combination of data aug-
mentation methods that improves the validation accu-
racy (Section 3).

e We generate an adversarial dataset that gives high fool-
ing rates to models not trained for adversarial inputs.
We also show how training on this dataset boosts our
validation accuracy (Section 3.3).

e We build an ensembled model with ResNet-152D (a
custom architecture based off ResNet-152), DenseNet-
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169, and VGG-19_bn, which outperforms each model
individually (Section 4).

e Finally, we try to understand why the model makes a
certain classification result and highlight potential ad-
versarial perturbations that could change the prediction
using Explainable Al (Section 6).

2. Approach and Tools

All code was written in PyTorch 1.4.0 and Python. The
model was trained using Google Cloud’s Deep Learning
VM instance and both Nvidia Tesla K80 and Nvidia T4.

Our code and final models can be found at the follow-
ing link: https://github.com/ahadrauf2020/
yolo9000.

The model was evaluated on the Tiny ImageNet
challenge (https://tiny-imagenet.herokuapp.
com/) created by Stanford University. Tiny ImageNet con-
tains 200 classes of 64x64x3 RGB images. There are 500
images per class (100,000 images total) for the training set
and 50 images per class (10,000 images total) for the valida-
tion set. Validation loss was calculated as the cross-entropy
loss between predictions and labels.

We began by preprocessing each image with a denoising
filter and applying data augmentation techniques (Section 3).
It was then passed to an ensemble of models (Section 4.5),
including ResNet-152D (a custom variation of ResNet152),
DenseNet-169, VGGNet-19_bn, and a Residual Attention
Network (Wang et al., 2017). We analyzed the average of
the outputs for both Top-1 and Top-5 accuracy (Section 4.5).
The results are discussed in Section 5. The final output was
also visualized via class action maps to better explain how
models differentiate different classes (Section 6).

3. Dataset

This section discusses all the data augmentation techniques
utilized on the dataset before inputting it to the model.

3.1. Denoising

We found that preprocessing the images using a denois-
ing filter helped improve our accuracy and robustness to
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noise. Though it can cause a decrease in accuracy for nor-
mal training data, it may improve accuracy for adversarial
and perturbed images (Rodner et al., 2016). To test the
effects of this method, the OpenCV?2 function fastNIMeans-
DenoisingColored() was used. Figure 1 shows the effects of
denoising on an image. This approach did cause a decrease
in training accuracy, as expected, but it improves robust-
ness on adversarial or perturbed images. Table 1 shows the
effects of denoising on accuracy.

(a) Before Denoising

(b) After Denoising

Figure 1. The figure shows the results of denoising an image us-
ing OpenCV2. Various details are removed from the barrel after
denoising in image (b) compared to image (a).

3.2. Data Augmentation

Based on prior work showing the effectiveness of data aug-
mentation for improving model robustness (Kim, 2016)Mul-
tiple data augmentation techniques were used when training
the model since it’s an effective approach in improving ro-
bustness. A number of data transformations and their effects
when applied to the validation dataset of our ResNet152-D
model (described in Section 4.1) can be seen in Figure 2. In
particular, we found vertical and horizontal flips, grayscal-
ing, random perspective transforms, and random erasures of
part of the image to be the most important data augmenta-
tions for training networks for robust performance.

3.3. Adversarial Perturbations

Previous work also shows that training on adversarial ex-
amples can improve model robustness (Goswami et al.,
2019). In addition to the above data transformations, we
explored the Fast Gradient Sign Method (FGSM) (Goodfel-
low et al., 2015) and Universal Adversarial Perturbations
(UAV’s) (Moosavi-Dezfooli et al., 2016) as methods for pro-
ducing adversarial examples to train on. FGSM was helpful
for both training and validation, producing high fooling rates
on models not trained for adversarial perturbations (Table 1).
While not as imperceptible as attacks like Universal Adver-
sarial Perturbations below, with perturbation factor € = 5Se-3,
this method helped train images to become robust to noise
beyond the scope of the denoising filter. A visualization of
how the FGSM perturbs images can be found in Figure 3.
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Figure 2. The effect of different data transformations when applied
to the validation dataset on a ResNet-152D model trained for 53
epochs. We applied the worst-performing transformations to the
training set for future epochs.

Original

Figure 3. Visualization for how the Finite Gradient Sign Method
perturbs a coastline image with e =5e-3. While it isn’t a particu-
larly discrete adversarial attack, when used for training it helped
provide a robustness beyond just the scope of our local denoising
filter.

Table 1. Effects of denoising and the Finite Gradient Sign Method
adversarial attacks (¢ =5e-3) on the validation accuracy of a
ResNet-152 model, trained for 5 epochs on either a normal or
blurred training set.

Normal Blurred

Training Set  Training Set
Normal Validation Set 62.0% 58.8%
Blurred Validation Set 53.0% 59.6%
FGSM Attack on Normal Vali- | 0.68% 0.73%
dation Set
FGSM Attack on Blurred Vali- | 0.93% 0.89%
dation Set

Although UAV’s gave us very high fooling rates (75.2% on
a ResNet-50 model trained for 10 epochs, and after training
UAV’s for 5 epochs), when training our model on the above
data transformations, we noticed no significant improvement
in training or validation accuracy. We hypothesize that this
is in part due to our processing denoising filter (Section
3.1) and how our model was trained to be resistant to small
transformations via data augmentation (Section 3.2).
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4. Models

This section discusses all the models trained for a model
ensemble. The following models were used: ResNet-152D
(a custom variation on the popular ResNet-152 architecture),
DenseNet-169, VGG-19_bn, and the Residual Attention Net-
work. It also discusses the results in using model ensembling
and snapshot ensembling.

4.1. ResNet-152D

The first model we used was a modified version of the
ResNet-152 architecture (He et al., 2015), denoted as
ResNet-152D in this paper. Inspired by the robustness of
Q-learning, we tried to apply a weight decay factor so the
residual connections would pass forward not only the previ-
ous layer’s output, but also a geometrically scaled version
of all previous outputs from the same downsampling group
(Figure 5). More concretely, if we denote the ith bottle-
necked CONV layer in a downsampling group as F;, the ith
layer’s output as y; (with ¢ > 1 and y, being the output of
the previous downsampling group), and the weight decay
factor as y then:

i—2

yi = Fi(yic1, {Wi}) + yica + Z Ty, (1)

n=0

As written, v = 0 corresponds to the normal residual opera-
tion. After hyperparameter tuning using randomized search
with v € [0,0.2], v = 0.045 gave not only the best vali-
dation accuracy but also the fastest training speed (albeit
both were relatively minor improvements, especially when
using transfer learning from a pretrained model). We hy-
pothesize that, just as residual connections were proposed
to speed up early-scale training by feeding forward layers
regardless of poorly optimized CONV layer weights, our
geometrically scaled residual connections allows the net-
work to remember long-term dependencies instead of just
short-term dependencies.

The model was trained for 53 epochs. 18 epochs were
on the raw dataset and 35 epochs had data augmentation
techniques discussed in Section 3.2 applied. The model
achieved a validation accuracy of 65.2%, as shown in Figure
6. The motivation for switching datasets like this came
from (Hendrycks & Dietterich, 2019), who showed how
splitting your training between varied datasets can help your
model converge to a better local minima. We indeed see
an improvement, and our model achieved a 3% validation
accuracy boost and a noticeable decrease in the validation
loss after switching datasets.

4.2. DenseNet-169

An additional model used was DenseNet-169 (Huang et al.,
2018). Beginning from the pre-trained model in PyTorch,

Training Accuracy Training Loss
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Figure 4. Comparison between ResNet152-D and ResNet-152 for
the training accuracy and loss across the first 10 epochs. Despite
starting off from a worse initialization point, ResNet152-D trained
faster and eventually exceeded the original ResNet152. We found
this robustness especially handy when applying data transforma-
tions and perturbations, as discussed in Section 3.
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Figure 5. Pictorial diagram showing how ResNet-152D differs
from the standard ResNet model. The weight decay + is applied
geometrically across 3x3 CONV layers in the same upsampling
group. The upsampling groups represent the size of the upscaled
layer input sizes, from 64 at the beginning of the network to 512 at
the end of the network.

the model was trained via transfer learning for 50 epochs
with a learning rate of le-4. It quickly converged to its local
optima. After 50 epochs, it achieved a validation accuracy
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Figure 6. Accuracies and losses for all models. The ResNet-152D
graphs show a transition from normal to augmented datasets at
epoch 15. Validation accuracy is 63.38% and training accuracy
is 51.91%. Validation loss is 1.47 and training loss is 1.95. The
DenseNet-169 graphs show that validation accuracy is 66.83% and
training accuracy is 83.36%. Validation loss is 1.38 and training
loss is 0.63. The VGG-19_bn graphs show that the validation
accuracy is 63.23% and training accuracy is 80.35%. Validation
loss is 1.68 and training loss is 0.69. The ResAttnNet graphs show

that validation accuracy is 30.61% and training accuracy is 28.34%.

Validation loss is 2.97 and training loss is 3.12.

of 67% and training accuracy of 85%, as shown in Figure
6, which shows both the loss and accuracy for training and
validation.

4.3. VGG-19_bn

Another model used was VGG-19_bn. Previous work men-
tioned that VGG-19_bn in particular is a robust model
against adversarial perturbations (Roy et al., 2019). Be-
ginning from the pretrained model in the PyTorch library,
the model was trained via transfer learning for 40 epochs
with a learning rate of le-5 and a batch size of 500. It used
the data augmentations in Section 3.2 to improve robust-
ness, and a stepped learning rate scheduler (stepL.R) that
divided the learning rate by 10 every 15 epochs. It achieved
a validation accuracy of 63.23% and training accuracy of
80.35%. Figure 6 shows the loss and accuracy for training
and validation.

4.4. Residual Attention Networks

Finally, we explored the potential for using residual atten-
tion networks. The residual attention network, referred to
as ResAttnNet in this paper, is constructed with stacked soft
attention modules (Wang et al., 2017). Each Attention Mod-
ule is divided into two branches: mask branch and trunk
branch. The trunk branch is used for feature processing and
can be adapted to any network structures. Given the trunk
branch output T'(z) with input x, the mask branch learns
an equivalently sized mask M (z). The output of Attention
Module is H(z) = (M(z) + 1) * T'(z). The ”+1” term
embodies the residual attention component, which the paper
authors found helped prevent the degradation of attention
over long residual chains. The model was trained for 15
epochs and achieved 30.51% validation accuracy.

4.5. Model Ensembling

One technique to improve model robustness is model en-
sembling (Cheung, 2017). The models explained before,
ResNet-152, DenseNet-169, VGG-19_bn, and Residual At-
tention Network, were used in the model ensemble. The
models’ output was then aggregated via either majority vote
or by taking the average of the last layer’s logit predictions.
These various approaches were compared in Table 2.

5. Results

As a result of using all these approaches discussed before,
we were able to improve the accuracy on the dataset up to a
Top 1 Accuracy of 71.1% and a Top 5 Accuracy of 90.0%
using a model ensemble of ResNet-152D, DenseNet-169,
and VGG-19_bn, as shown by Table 2. On a blurred dataset,
it achieved a 60.4%. Ensembling models via averaging
tended to perform better, perhaps because the diversity in
our model varieties meant that different models specialized
(and thus had higher confidence values) over different input
image domains.
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Table 2. Top 1 and Top 5 validation accuracy comparisons between the individual models and several ensembles. In the table, ResAttnNet
refers to the Residual Attention Network described in Section 4.4. We evaluated our dataset’s performance on both a normal dataset and
the denoised dataset described in Section 3.1. Note that ensembling by majority vote has no Top 5 Accuracy because the diversity in our
model ensembling meant that models rarely agreed on anything outside their top choice.

Normal Validation Set Blurred Validation Set
Model Top 1 Accuracy Top 5 Accuracy Top 1 Accuracy
(1) ResNet-152D 63.5% 85.2% 53.1%
(2) DenseNet-169 67.3% 87.2% 49.3%
(3) VGG-19_bn 63.2% 84.3% 57.9%
(4) ResAttnNet 30.5% 58.3% 25.2%
Ensemble (1), (2), (3), (4); Averaging 70.7% 89.7% 60.2%
Ensemble (1), (2), (3); Averaging 71.1% 90.0% 60.4%
Ensemble (1), (2), (4); Averaging 69.7% 89.0% 60.4%
Ensemble (1), (3), (4); Averaging 67.1% 87.5% 55.6%
Ensemble (2), (3), (4); Averaging 67.1% 87.5% 59.2%
Ensemble (1), (2), (3), (4); Majority Vote | 67.8% - 56.5%
Ensemble (1), (2), (3); Majority Vote 68.7% - 57.2%
Ensemble (1), (2), (4); Majority Vote 62.0% - 53.5%
Ensemble (1), (3), (4); Majority Vote 63.6% - 50.0%
Ensemble (2), (3), (4); Majority Vote 63.4% - 51.9%

6. Extra Credit: Explainable Al

One of the tasks in the project was to include explainable
Al, a way to understand why our deep learning model made
a certain classification decision. To do this, we created class
actions maps (Zhou et al., 2016) for ResNet-152D to show
where the model was focusing when it selected its top 3
classes, as shown in Figure 6. The model seemed to focus
in particular on the sunglasses’ earpieces, the difference
between the Christmas stock’s red and white regions, and
the difference between the refrigerator’s top and bottom
compartments. While the first two are intuitive, the latter
one suggests that the image dataset might have been skewed
towards open refrigerators so the model might normally try
to cheat by seeing if there’s a light gradient between the top
and bottom compartments. It’s also interesting to look at the
image’s focus for its 2nd and 3rd top choices. For example,
the Christmas stocking is identified as a sock if we ignore
the monkey and the color gradient, or instead as an apron if
we focus on the area from the ankle region and up.

Visualizations like these allowed us to better understand
where our models were focusing during testing, allowing
us to both explain their current outputs and think up new
data augmentation techniques or model variations in order
to better counteract future examples.

7. Conclusion

Thus, as a result of this project, we researched and deployed
a variety of deep learning techniques to improve robustness
in a computer vision problem. With these approaches, we
believe that a high accuracy can be achieved, even when

adversarial examples are provided in a test dataset.

7.1. Lessons Learned

Several approaches were taken that didn’t work as well as we
had originally hoped. These included snapshot ensembling
for robust multi-model ensembles and using Generative
Adversarial Networks to generate adversarial examples.

7.1.1. SNAPSHOT ENSEMBLING

To improve the robustness of our ensembling techniques,
we tried to implement snapshot learning, which varies the
learning rate over several the course of several ’snapshots”
to allow the model to converge to different local equilibria
(Huang et al., 2017). We experiemented with ensembles
of between 2-4 snapshots trained on ResNet-18, but found
that snapshot ensembling provided little to no advantage
over even a quick 10 epoch transfer learning from ResNet-
18’s pretrained ImageNet model. We hypothesize that the
reasons for this is ImageNet’s similarity to Tiny ImageNet,
causing our model’s convergence to fall readily into a small
subset of equilibria shared by the two datasets. This explains
why varying the learning rate wouldn’t drastically affect
the model’s accuracy, and could perhaps be remedied via
more data augmentation techniques extending off the ones
in Section 3.

7.1.2. GENERATIVE ADVERSARIAL NETWORKS

In order to generate adversarial examples, we trained a Gen-
erative Adversarial Network. The generator outputs a pertur-
bation, which is scaled to satisfy a norm constraint. Then we
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Figure 7. Class action maps for ResNet-152D on sunglasses, a
Christmas stocking, and a refrigerator from top to bottom. The
class action map above shows what parts of the image the model
was focusing on.

add it to original images, and clip to produce the perturbed
images. As a result, we generate an adversarial dataset using
image-dependent non-targeted attack. However, the GAN
model generates intense noise as shown in Figure 8, so the
performance of our model is largely decreased. The valida-
tion accuracy of our pre-trained ResNet-50 on adversarial
examples was 16%. Additionally, considering that in reality,
people usually don’t have access to the actual dataset, we
decided to give up on the adversarial training method. How-
ever, it is worth for future exploration as a way to improve
the robustness of deep learning models.

-

(a) Original Image (b) Perturbed Image

Figure 8. (a) The original image. (b) The perturbed image. As
shown, the generative component of our GAN model produced
images with intense perturbations off the training set, implying a
failure in convergence.

Table 3. Output of snapshot ensembling over various step sizes.
Each model was trained for (2*step_size + 1)*(number of snap-
shots) epochs, where the learning rate was alternated between le-4
for step_size epochs and le-5 for step_size + 1 epochs. The base
model was ResNet-18, and training was done via transfer learning
from PyTorch’s pretrained model. The first row represents the
accuracy of a model not trained with snapshot learning.

Snapshots Step Size | Total Validation
Epochs Acc.
- - 10 53.3%
2 5 22 53.1%
4 3 28 53.5%
2 15 62 52.6%
4 10 84 52.6%
7.2. Future Work

In the future, to improve model robustness, we can do further
research to find other improvements and do further experi-
mentation. There were many approaches that we could have
additionally done. For example, one effective approach is
to make a model do pretraining on semi-supervised tasks
before classifying images. Examples of such image tasks
include filling patches, predicting the amount of rotation,
and rearranging a jigsaw (Chen et al., 2020). In addition,
while Generative Adversarial Networks failed to train well
in our case, more training resources and additional measures
against mode collapse might help the generative model pro-
duce photo-realistic images.
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Ahad Rauf worked on adversarial training, explainable Al,
and trained the ResNet-152D model. Chris Sun trained the
residual attention network and worked on GAN-based ad-
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Watanabe worked on snapshot ensembling, model ensem-
bling, and trained the VGG19_bn model.
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